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To sum up, we have demonstrated the cases when we can pass from the functional equations
for Cp=(u,rn) to a system of ordinary (not differential) equations with only a few unknowns.
it can be said in general that the passage can be made if, in the expansion (= Zdxcos (8 -+ i),
the condition |edyx|=2 6 is satisfied by only a few harmonics. The stationary-phase method
also simplifies the functional problem. Given these possibilities, our scheme is preferable
to the methods described in . /1/, in which the results are stated as first-order non-linear
equations for the amplitudes and phases.
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THE CONDITION FOR SIGN-DEFINITENESS OF INTEGRAL QUADRATIC FORMS
AND THE STABILITY OF DISTRIBUTED-PARAMETER SYSTEMS*

F.D. BAIRAMOV and T.K. SIRAZETDINOV

The stability of distributed-parameter systems described by linear
partial differential equations is investigated by reducing the original
equations by a change of variables to a system of first-order equations
in time and in spatial coordinates. The Lyapunov functions are
constructed in the form of single integral forms. New necessary and
sufficient conditions for the sign~definiteness of these forms are
obtained. These conditions, unlike the Sylvester c¢riterion, do not
require the calculation of determinants. The <check for sign-
definiteness is made wusing recurrence relationships and is a
generalization of the results obtained in /1/.

The proposed criteria are applied to derive sufficient conditions
for the stability of distributed-parameter linear systems. The
construction of functionals for the one-dimensional second-order linear
hyperbolic equation is considered in more detail. As an example, we
examine the stability of the torsional oscillations of an aircraft wing.

1. Consider a system of first-order linear partial differential equations of the form

8

7] & [
F= 2 (40 + B Fh) + Ao+ Byx)b (1)
k=1
c L
3 (602 + DT ) + Cotmr + Dyx) 9 =0 (1.2)
K==l
where te& I =(0,0), X = (2,2 ...,.2) & XCE is a vector of spatial coordinates, ¢ =

¢ (x, 1) is the n-dimensional vector of phase functions, ¢ =¥ (x, f) is the m—-dimensional
vector of phase functions whose derivative with respect to time does not occur in the systenm
(1.1}, (1.2), Axx), By{x), C; {x), and Dy (x) (A =0,1,...,5) are matrices whose elements
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are bounded measurable functions.
Note that any linear partial differential equation of any order or any system of such
equations can be reduced to the form {1.1), (1.2) by introducing supplementary variables.
For example, the scalar hyperbolic equation

%y oy dy %y .
S = @ (2 g+ 2 (2) o Fas (@) g b ey (1.3
e (0, Dy ay (x) 22 const > 0

can be reduced to the form {1.1), {1.2) by taking the function y=y(z, # and its first
derivatives as the new variables:
¥ =y, Oylot == @q, Gylde = gy {1.4)

We will rewrite the original Eq.(1.3) in these variables, augmenting it with integrability
conditions /2/ and relationships that are obtained from (1.4) when ¥y is eliminated. We
obtain the system

99 e I¢s3 _ dps  0Qs 9
g6 = Ve o =@ gy Fadehap ety =g T =% (1.3)

which is equivalent to Eq.(1.3). Using the notation = (§;, Gp 93},

wou oo 0 1 0
A=10 0 @], A=la a e, C=000, Co=0,01 (1.6)
10 10| o o o
we rewrite this system in the form (1.1), (1.2), where k=1, 2 =2 By=Dy=0(k=20,1,...,5).

In order to reduce a high-order linear partial differential equation to the form (1.1},
{1.2), we should use the corresponding low-order derivatives as the supplementary variables,
expressing the original equation and the integrability conditions in terms of these derivatives.
The variables ¥ appear if the derivatives with respect to ¥ and X in the original equation
are of different orders, and the number of variables is not necessarily equal to the number
of equations in the system. These topics were consideredin more detail in /3, 4/.

The components of the initial values of the vector function @ (x,?) belong to the space
L,y (X), and the boundary conditions are defined on some part S, of the boundary & of the
region X in the form

ap(x, =0, Pb(x)=0, x=S,C8 %))

where a, B are matrices whose elements are bounded measurable functions.
The solution of system (1.1), (1.2) is considered in the class of functions from the
space

WX % D={g: i |9 E L (X X 1), e Ly(X x 1))

a9, oy 0% o _

3 =L (X X1, ELitX xh, —cLlL,XxI) tk=12,...,s}

i 6zk d:::k
Here and in what follows, i=1,2,... n, unless otherwise specified.

Consider the stability of the solutions ¢=%=0 of system (1.1), (1.2), (1.7) in
the measure
p={eT(x. )@ (x, 1) dx (1.8)
x

The Lyapunov function is constructed as the integral quadratic form

V= (a7 (x,0)v(x) 9 (x, Hax (1.9)
X

where v (x) is a symmetrical matrix whose elements are bounded functions differentiable
almost everywhere on X.
We find the derivative of the function V by Eq.(1l.1l),



441

8

av ap T 7T op

T=§[ 21 (e7orgem+ G A + @By 4 (1.10)
=

T
o B,;qu)) + @7 (0d, + ATv)@ + 9TvBb + $7B,Tvg] dx

2%

Using Eq.(1.2), we supplement this expression with the equality

&

§ (@t 3 (6 g+ Dt ) + o+ Do) +

f=d

> T T T
[ (“Z‘LC}:T + ‘g&""DkT) + (PTCOT + 'lpTDoT](FlT‘P + Ty "p)}dx =0
T "
k=1
where I’} =T, (x) and T, =T,(x) are matrices (as yet arbitrary) with elements from the
space of functions differentiable almost everywhere on X. Integrating by parts, we obtain

av {0 9Dy
=Y {-erer ryr[- Y +TuDy + DTy |+

A k=1

+vBy + 1Dy + CoTraT] ¥+

<y (@B, +T4D)
13 X
q)T {—kg WT

=1
o [__ 2 2(8,Tv + D,"1,T)

f=1

+ BT + DI, + cho] ¢+

azk

S T T
[ AT+ 0T —vA — TG @ + - (DTS —TuDy v +

az.
k=1 k
T
ka (ckszT — vBy — Uy ) g + ¢7 (cmk - BkTV - DkTFJ.T) T}a_:’; ]}dx +

§[ D67 0ay + 1,000 + ¥T,Deb + 47 0By + TuDy) 9 +

5 “k=1
V(B0 + DT @) cos (m, ) | dx

Here

SV 8 (04, + TiE)

o= az.

—vdy— 4,0 —T.C, —C,’TT, 2= X (1.41)

k=1 k

where 7 is the outer normal to §; the notation x&' X  indicates that Eq.(1.11) holds
almost everywhere on X.
Let the matrices T,, I'; satisfy the equations

vAy + 10 = A4, Tv + 717, T,y =Dy,7, 717 = vB, + T\D, (1.12)

o 9{TeD,)

—t 1,0, — D,'T," = 0

fram ¥

>y 8{uB, +TyD) )
k_)S-—ka‘L....varlu‘,—corJ.—_o, xe= X, k=14,2,...,5
=1

3
RZI [97 (vAyx + T,C) @ + B TaDyp + 9T (B, + I'yDy) $ + (1.13)
v (B,Tv + DI,y @l cos(n, z,) = 0, x =" §
Then for the derivative we obtain

T =—\rEnemexyax (1-14)
X
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i.e., a quadratic form similar to that for V (1.9).

By the method of Lyapunov functions /5/, the solution ¢ = = ( of system {l.1), (1.2}
(1.7} is asymptotically stable in the measure p (1.8) if the functional (1.9) is continuocus
and positive definite in the measure p, while its derivative 4dV/dt (1.14) is negative
definite in this measure. In stability analysis, the condition of negative definiteness of
the derivative dV/dt (1.14) is replaced with the condition of non-positive definiteness.

The continuity of the functional V (1.9) in the measure o (1.8) follows directly from
the boundedness of the matrix wv(x). Thus, stability analysis reduces to checking integral
quadratic forms (1.9) for sign-definiteness.

These results also suggest a solution for the problem of constructing the functional V
{1.9) given a symmetrical matrix o {x). This involves solving Egs.{1.11), {1.12) for the
matrices wv(x), I'; (x}), [;{(x} with the boundary conditions that follow from (1.13), {1.7}.
However, unlike the problem of constructing quadratic forms for ordinary differential eguations,
not all the elements of the matrix (x) may be arbitrary in this case. This problem is
considered in more detail in Sect.4 for a one-dimensional second-order hyperbolic eguation.

‘

2. Let us consider the conditlons of sign-definiteness. First we will derive the
necessary and sufficient conditions of sign-definiteness of the integral quadratic form

=g (x) 7 (x)] (x) @ (x) dx 21)
X
in the measure p {1.8). Here @ (x) is the n-dimensional vector function with arbitrary
components @; (X} = Ly (X), and f(x} = {;; (x)}] 1s a square triangular matrix whose elements
are bounded measurable functions and the elements under the main diagonal are zero almost
everywhere on X, i.e., f,;(x)=0,x&="X (j<i,ji=1,2,..,n—1).
Theorem 1. For positive definiteness of the integral quadratic form £ (2.1) in the
measure p (1.8) it is necessary and sufficient that
70 >0, xe X (2.2)

i.e., that for any set 7t X of finite measure there exists a positive number & such
that

s pdx>e>0 (2.3)

T

Proof. Necessity. Assume that the form F (2.1) is positive definite in p (1.8}, i.e.,
if pZe>0, then there exists a number &8 =0(e) >0 such that F > §(e). Now, assume
that for all values of the index < less than §, where s [1,2, ..., nl is a fixed index, we
have |/;;{(x}]>0, x="X, and for i=s5 there exists a set (" X of finite measure where
Jos X} =0, x&" T The behaviour of f,(x) and the set X\t and the behaviour of
other elements ji;(x  on X is irrelevant.

Since the choice of the functions ¢ (x) 1is arbitrary, we choose them so that

§{x)=0, x&X (i=s+1s+2,...,0); g{xy=0 x= X\
(=1,2,....8)
‘Z‘fij(x)(pj(x):o! x&'T (imi,z,...,s—i)
=3
lo,(x)]| 2e; >0, xe=",CtC X |9, (x) >0, xe"1\71,

Then
$
p={ 3 ordx> {pax =2 |1, =e>0
T i=1 1
where |7,] is the measure of the set 1T, By the conditions on f,, and ¢;, we obtain
F o= S(fss(!)s)2 dx =0
T

which contradicts the positive definiteness of the form F {2.1) in the measure p (1.8},
i.e., for pz=e>0 there is no number & (g) >0 such that F 2> 6(e). Therefore, the
condition | /[, (X)] >0, xe="X 1is necessary. Repeating the argument for all s=1,2,..., n

we prove the necessity of Conditions (2.2).
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Sufficiency. Assume that Conditions (2.2) hold. We will show that the form F (2.1) is
positive definite in the measure p (1.8), i.e, if p»>e>0, there exists a number &=
S{(ey >0 such that F > & (g). ‘

Thus, let Condition (2.2) hold and let p>e>0. But if p>e >0, then for at
least one value of the index %, say =5, we have |g,(x)|> v, (e >0 at least on some
set of finite measure 1+, X. Indeed, if no such set exists, i.e, if |1, ]| —>0, where
I7,|] is the measure of the set T, then p—>0 by @, L,;(X) and the absolute continuity
of the Lebesgue integral /6/, which contradicts the inequality pZ>&>0.

Let us now show that there exists a number &=08()>0 such that F> §(e). First
assume that @, (X)|>¥v%. >0 on 1, X, i.e., s=n Then

F> § (o dx > p,2 § fadx > v, = 8,0
T T

n n

If ¢.(x)=0, x&' X, but |@u (x){|>v-1>0 on 1, X, then we again obtain

F> § Untna@ndx > 8,10

Ty,
Continuing this reasoning step by step for s =n—2,n— 3,..., 1, we show that if
p=>e >0, then F>68() >0, where 0 {(g)=min(8,, 8y ..., ), i.e., F is a positive

definite form. The theorem is proved.
Now consider the integral quadratic form

v={ormrmer) dx (2.4)
x
where @ (x) is a n-dimensional vector function with arbitrary components @; & Ly (X), and
v{x) = || vy (X} is a symmetrical matrix whose elements are bounded measurable functions.
Let
v, =T (x)v(x) 9(x) (2-5)

Theorem 2. For positive definiteness of the integral gquadratic form V (2.4) in the
measure p {(1.8) it is necessary and sufficient that

i1
vy (X) — 12 bi(x)>0, x&='X (2.6)
=1
where the functions by, (x) (i<, j=1,2,...,n are computed from the recurrence formulas
= 3, .
bu(x) =[x — 3 h@]", xe'X @7)
. iy
b = oy [0 — Y by ] x&' X (G=i+1i+2...,n) (2.8)
1 gy

bij(x)=0, x&'X (>j,j=12,...,n—1)

Proof. Necessity. Assume that the form (2.4) is positive definite in the measure p
{}.8) . Then for a given &>>0 there exists 8=28(e) >0 such that V> &) if p> e
First we will show that in this case the quadratic form (2.5) is positive definite for
xe'X, d.e., v,>0 for ¢T¢ >0 almost everywhere on X.

Assume that this is not so, i.e., 1, <0 at least on some set *C X of finite measure

[v}. Since ¢(x), and therefore ¢Tg, is arbitrary, let ¢'¢>0 on tC X and ¢Tg=20
on X\t when p>e>0, Then v= va&x\<\0, which contradicts the positive definiteness

T
of ¥ (2.4) in p (1.8). Hence it follows that the form v, (2.5) is also positive definite-

ness almost everywhere on X.
The positive definite form v, (2.5) for a fixed X& X is representable as
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0, = @7 (x) BT (x) B(x) 9 (2) 2.9)
where B (x) =] b; (x}]] is a triangular matrix with zeros under the main diagonal. We have
the inequalities

[0 (x){ >0, x&='X (2.10)

Indeed, if b;{(x)=0 on a set 1 X of finite measure, then by Theorem 1 the form V
(2.4) with the integrand function represented by (2.9) cannot be positive definite in the
measure p (1.8). We have obtained a contradiction. Thus, inequalities (2.10) hold.

Now, comparing (2.5) and (2.9), we obtain v (x) = BT (x)B (x), or in scalar notation

valx) = 3B () vy = 3 (@b =1+ 1Li+2..n) (2.11)

Solving system (2.11) for various values of the indices 7 and j, starting with { =1,
j=1, we obtain (2.7) and (2.8). Substituting {2.7) into (2.10), we verify that inequalities
{2.6) hold. This completes the proof of the necessity of Conditions (2.6).

Sufficiency. Assume that the inequalities {2.6) with the functions b&;;{x} calculated
from (2.7), {2.8) are satisfied. Then the given quadratic form V (2.4) is representable in
the form

V= §q>T (x) BT (x) B (x) ¢ (x) dx

and by (2.6), {2.7) it satisfies Conditions (2.10). Therefore, by Theorem 2, the form V
{2.4) is positive definite in the measure gp {2.2). The theorem is proved.

Note that the proof of the necessity of the conditions of Theorem 1 and 2 essentially
uses the fact that the functions ¢; are arbitrary. If not all these functions are
independent, then {2.3) and (2.6} are only the sufficient conditions for positive definite-
ness of the integral forms (2.1} and (2.4}, respectively, because the proof of sufficiency
does not regquire the functions ¢; to be arbitrary.

For example, the functional V= {(p®—apdz (here and in what follows, integration

over & is from 0 to 1), where a = const >0, 9, = dg,/dz, @, (0, /= 0, has the bound (we use the
inequality /5/ [ofdz<<Y,{eqdz)

v={ e+t —por—apn de> {Goi + @ —p —0 otz

where B is a number such that 0<B<1. We choose B so that B=2{1 —B) —a Hence we obtain
B =152 — a) The -condition 0<P<«<1 1is satisfied if a<<2. Here

veipe—a e tod

Thus, the functional V is positive definite in the measure p ——-S’(q»f—i—qa,ﬁ)dx, if e«
although the form ¢2 —ap? is not positive definite in ¢, and g,

3. Applying these conditions of sign-definiteness of integral quadratic forms, we will
derive the sufficient conditions of asymptotic stability of the solution @ =9=0 of
system (1.1), (1.2), (1.7) in the measure p (1.8).

Theorem 3. Assume that the matrices v (x), I'; (x), T, (x) satisfying the Conditions
(1.12), {1.13) exist and that the inequalities {2.6) and

i-1

03 (X) — g; di(x)>0,xe' X (3.4

hold, where ; (x) are the elements of the matrix o {x) {1.11), and the functions djy (x)
i<, J=4,2,...,n are computed from recurrences similar to (2.7), (2.8) with Uiy
replaced by ;. Then the solution e@=¢=0 of system (1.1}, (1.2), (1.7) is asymptoti-
cally stable in the measure p (1.8).

The proof of the theorem follows from the fact that by Theorem 2 the form V (1.9) is
positive definite and the derivative dV/di (1.14) by the equations of the process (1.1),
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(1.2), (1.7) is negative definite in the measure p (1.8).

$imilar conditions of asymptotlc stability of the solution ¢ = Y= 0 in the measure
p (1.8) can be formulated using the integral quadratic form (2.1). In this case, by Theorem
3, inequalities {(2.6) are replaced by the simpler inequalities (2.2), and the matrix v (x)
in {1.11)~-(1.13) is replaced by the matrix T (x}{ (x), where f(x) 1is the matrix from
{2.1).

4. Consider the construction of the functional V {1.9) for Egq.{1.3) with linear homo-
geneous boundary conditions, e.g, of the form

buy ++ badylz 4 bedylot =0; 2=10; Lt>20 4.1y
bt + b2+ b0

where b, b, and b, are constants. Introducing new variables, we replace Egq.(1.3), (4.1)
with the equivalent system (1.5) and
by@y - bay & by =0; z=0; Lt=0 (4.2)
In this case, the matrices By, Dy, Iy in Egs.(1.12) are zero. Therefore, only the
first of these equations remains, which together with (1.11), where =1 and g =2, can
be written in scalar form. This gives the following system of finite and ordinary differential
equations:

Yar = Vipy Vo1 = GVia Gylsz = V3 (4.3)
dyyfdz — 2e.0 = Oy, 4 (ayag)fdz + 2ayvy, — 204033 = Og3

d {ayvy)/de — agvyg — agvgs -+ P = Oq3, 4 (aVn)/dz — aghyg — aglyy = gy, (4.4)
Avisldz — vy — aglyy — AgUpg = @5, dpg/dxT — 201y — 284055 == gy

where vi; = v (2), v = Yu (), @ij = 04; () are the elements of the matrices v(z), I'(z), and o (2},
respectively.
Condition (1.13) is rewritten as
T (4, Hlv (D4; () + Ty (D6, Ble (L, 5 — 7 O, Dlv (04, ©) + (4.5)

LOGOeO. =20

In order to construct the functional V, we have to solve system (4.4) for g, u; with
the boundary conditions that follows from {4.5) subject to Conditions {4.2) and relationships
(4.3), using given values of the functions ;. However, as we see from Egs.({4.4), the
functions o, and oy cannot always be specified independently of one another, because the
first and the fourth equations in (4.4) are consistent only if @, and g satisfy the
relationship

gy = (Wgy — ((day/dz) — 2ag)vys — bayvy, — 2a,8505) 0 (4.6)

In many cases, w4 1is determined from Eq.(4.6) apart from an arbitrary constant, so
that its value can be varied.

Note that the functions v, and w,; only occur in the last equation but one in (4.4).
In order to determine these functions separately, one of them is chosen arbitrarily but
satisfying the boundary conditions, if given.

Thus, the problem of constructing the functional V is solved in the following order:

1) specify the values g, O, O, O @

2) solve the first four equations in {4.4) with the boundary conditions that follow from
(4.5), (4.2), {(4.3) to determine vy, Vg, Vs, Vas

3) find vy, as it follows from (4.3), using the formula vy = oy

4) from the fifth equation in {4.4) find the functions vy or vy, choosing one  of
them arbitrarily;

5) from Eq.(4.6) compute wy,.

The functional V (1.9) and its derivative d4v/a: (1.14), by virtue of (1.5) and (4.2},
are completely determined.

Example. Consider the stability of torsional oscillations of an aircraft wing, described
by the equations th :r (H g:) hlig—f—m’y. s (01

¥ {0, 8) = gylaz =40

5 g @7y

i:c=1

where 1 is the wing half-span, Z is the coordinate normalized by I, y=y(s,9 is the torsion
angle of the cross-section with the coordinate z;7=17I(2), R=R(2),h=h(z are the linear
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moment of inertia, the torsional stiffness, and the damping ratio in this cross-section,
respectively; the term M (z}y is the linear moment of the aerodynamic forces.
Egs.{4.7) are written in the form of the system (1.5), where

ay == R/(IB), ay = (dR/dx)/[(I??), ag = —h/I, ay = —MI/I (4.8)
and
90, )=0(1, ) =0 (4.9)
From (4.9) we obtain
A, (0, /ot = @, (0, 1) = 0 {4.10).
Using {4.9), (4.10) and (4.3}, we obtain from (4.5)
= 0@ =)= (1) =0 4.1y
Let us construct the functional V. Take o = ©3= @y =0, 0y = —2a,%;, g = a0y, Solving
the system of the first four equations from {4.4) with the boundary Conditions {4.11) and
using the values of 4,... 24 (4.8), we obtain

Yu =0, vy = I3 vy3 =0, v = %, vy5 = ayvyy = R

where ¢, c are arbitrary constants. Therefore, on=2qMB, og=2R. Setting v;=0, we
obtain from the fifth equation in (4.4) vy = —agvy, — a4, v = (g -+ B,

From Eq.(4.6) we obtain ay = 2 (ch — 1),

Let ¢ =1. Then the functional V (1.9} and its derivative d4V/dt (1.14) by system
(1.5), (4.8), (4.9) are written in the form {integration over x is from O to 1 throughout)

V= {10+ oty 192 4 21000100 + st + oRig?] de 12)
AVidt =—2 S (M2 1 (c,h — I} gy 1 Royt) dz (4.13)

Using the inequality /1/ {@de <Y, | ¥z, we obtain the bounds

v >S{[(k+ M) B 2oy 11— 0y) min R) @y 4 ool 12,2 -+ 2113y a -+ c:8y min Roe?}dx (4.1%)
avidt < —2{IMP + 2 (1 — 6,) min Rlp? + (csh — IBg,? -+ 8, min Reg?) dz (4.15)
where 6, and 6, are arbitrary numbers such that 0<6, <1, 0«6, <1, and the min operabtion

is over all =ze|0,1].
From inequality (4.15), (3.1) we obtain that the form 4V/d¢t (4.13) is negative definite
in the measure

p= S (@1 + 9.f + p?) dz (4.16)

2min R + min ME >0, ¢,>> max I/mink (4.17)

The conditions of positive definiteness of the functional ¥V (4.12) in this measures are
written by the criterion (2.6) as

ca 2> 0, ¢ (2 min R + min MP) + min h* > 0
¢y [¢3 (2 min R -+ min M#) + min A2 > max 1P (4.18)

The first two inequalities in (4.18) follow directly from inequalities (4.17), and the

last inequality is obtained from (4.17) by representing it in the form
¢ (2 min R + min MB) > 2 (max I — ¢; min h)

Here by (4.17) the left~hand side is positive and the right-hand side is negative.

Thus, the solution ¢=0 of system {1.5), (4.8), (4.9) is asymptotically stable in
the measure p (4.16) if the first inequality in (4.17) holds. The second inequality in
{4.17) is not a stability condition. It is the condition that the constant ¢ should satisfy
in order to ensure that ¥V {4.12) and dV/d {4.13) are sign-definite in the measure p
(4.16) .
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THE USE OF HIGH~ORDER FORMS IN STABILITY ANALYSIS*
A.V. STEPANOV

A method is proposed for determining whether forms of arbitrary high
order are positive or negative definite in a region of R* coinciding
with one of the coordinate angles. Using such functions, one can then
establish various modifications of well-known vresults of stability
theory. A theorem of Grujic /1/ concerning the exponential stability of
large-scale systems, generalized to the case of m-th order estimates,
yields new =zones of absoclute stability for the eguations of
translational motion of an aircraft. Various results are established
pertaining to the monotone stability of systems in which the right-hand
side is a polynomial of a special kind.

In many problems of stability theory it suffices to construct a
Lyapunov function which is positive or negative definite not in the
whole space but only in a subspace, namely, a cone. This is a logical
approach, for example, in relation to biological communities, since the
trajectories of a system describing the dynamics of such interactions
never leave the first orthant. Conditions for guadratric forms to be
positive {negative) definite in a specific cone - one of the coordinate
angles - were studied in /2/. A criterion for a quadratic form to be
positive (negative) definite in a certain region of R®, similar in a
sense to the conditions obtained in /2/, was established in /3/ and /4/.
Even before that, a criterion was proposed /5/ for a form of order 3 to
be positive (negative) definite in one of the coordinate angles. Also
worthy of mention is a method described in /6/ to determine whether
forms of arbitrary even order are definite in the whole space.

Relying on the concept of a cone coinciding with a coordinate
angle, as well as the results and /5/ and /6/, a method can be devised
to investigate whether a form of arbitrary high (including odd) order is
definite in an orthant of R®.

1. Definiteness of a form of arbitrary order min a cone. A cone in R" coinciding with
a coordinate angle will be denoted as follows /7/: K {&y, ..., %y}, where a;, are elements
of a basis {&;} taking values +1 and ~1, and

Qg =signz;, x;sE0; oz >g

Throughout, i=1,2,..., n
In a cone K of the region H={z: 0llz)l=1lx 14+ ...+ |z, | <<} we consider an m~th
order form
n n
WEy=23 ... 3 A4, g @iy s Ay g = const
iyl ip=im-y m
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