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To sum up,we have demonstratedthe cases when we can pass from the functional equations 
for Cl = (Ul, r& to a system of ordinary (not differential) equations with only a few unknowns. 
It can be said in general that the passage can be made if, in the expansion e, = ZAkcos (8kf-l-$d, 

the condition Idii\>ee, is satisfied by only a few harmonics. The stationary-phase method 

also simplifies the functional problem. Given these possibilities, our scheme is preferable 

to the methods described in /I/, in which the results are stated as first-order non-linear 
equations for the amplitudes and phases. 
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THE CONDITION FOR SIGN-DEFINITENESS OF INTEGRAL QUADRATIC FORMS 
AND THE STABILITY OF DISTRIBUTED-PARAHETER SYSTEMS" 

F.D. BAIRAMOV and T.K. SIRAZETDINOV 

The stability of distributed-parameter systems described by linear 
partial differential equations is investigated by reducing the original 
equations by a change of variables to a system of first-order equations 
in time and in spatial coordinates. The Lyapunov functions are 
constructed in the form of single integral forms. New necessary and 
sufficient conditions for the sign-definiteness of these forms are 
obtained. These conditions, unlike the Sylvester criterion, do not 
require the calculation of determinants. The check for sign- 
definiteness is made using recurrence relationships and is a 
generalization of the results obtained in /I/. 

The proposed criteria are applied to derive sufficient conditions 
for the stability of distributed-parameter linear systems. The 
construction of functionals for the one-dimensional second-order linear 
hyperbolic equation is considered in more detail. As an example, we 
examine the stability of the torsional oscillations of an aircraft wing. 

I. Consider a system of first-order linear partial differential equations of the form 

where t fz I = (0, 00)) x = (q, x,, . . .( z,)T E xc E' is a vector of spatial coordinates, 
cp (x, 1) 

rp= 
is the n-dimensional vector of phase functions, * =*(x, t) is the m-dimensional 

vector of phase functions whose derivative with respect to.time does not occur in the system 
(1.11, (1.21, 4 (xx), BR (x), C, fx), and Db (x) (k = 0, 1, . . .,s) are matrices whose elements 
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are bounded measurable functions. 
Note that any linear partial differential equation of any order or any system of such 

equations can be reduced to the form (1.11, (1.2) by introducing supplementary variables. 
For example, the scalar hyperbolic equation 

can be reduced to the form (l.l), (1.21 by taking the function y=y(z,f) and its first 
derivatives as the new variables: 

Y -= '8-l: dsiiit -- ‘fz. ay/as := gp3 tf.4) 

We will rewrite the original Eq.(l.3) in these variables, augmenting it with integrability 
conditions /2/ and relationships that are obtained from (1.4) when y is eliminated. We 
obtain the system 

which is equivalent to Eq.fl.3). Using the notation rp = ((F~, ppz, Q)', 

(1.5) 

we rewrite this system in the form (l-l), (1.2), where k =: I, z, = z, Bh. = Dh. = 0 (k = 0, i, . .,a.). 
In order to reduce a high-order linear partial differential equation to the form (l.l), 

fL.2), we should use the corresponding low-order derivatives as the supplementary variables, 
expressing the original equation and the integrability conditions in terms of these derivatives. 
The variables +@ appear if the derivatives with respect to t and x in the original equation 
are of different orders, and the number of variables is not necessarily equal to the number 
of equations in the system. These topics were consideredin more detail in /3, 4/. 

The components of the initial values of the vector function 'p (x, t) belong to the space 

Le (X)9 and the boundary conditions are defined on some part SO of the boundary S of the 
region X in the form 

cttp(x,t)=O, @p(x,t)=O, X~Ss,CS (i-7) 

where a, 8 are matrices whose elements are bounded measurable functions. 
The solution of system (1.11, (1.2) is considered in the class of functions from the 

space 

Here and in what follows, i = 1, 2, . . ., ?I., unless otherwise specified. 
Consider the stability of the solutions (p.=*=o of system (1.11, (1.21, (1.7) in 

the measure 

p= ~T(X,~)~(X,~)dX s 
x 

(1.8) 

The Lyapunov function is constructed as the integral quadratic form 

v= ~rpT(x,t)u(x)cp(x, t)dx 
X 

where V(X) is a symmetrical matrix whose elements are bounded functions differentiable 
almost everywhere on X. 

We find the derivative of the function 'v by Eq.(1.1), 

(1.9) 



(I 

dV 
dt== KU 

9p=vAk -$ + $ A,=vcp + ‘p=vB, -$- -I- 
X k-l 

k k k 

-$ BeTvcp) + (PT (VA, + A,Tv)cp + ‘pTvB& + 4’T&,TvCp] dx 
R 
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(1.10) 

Using Eq.(1.2), we supplement this expression with the equality 

where rr = rr (4 and r, = I',(X) are matrices (as yet arbitrary) with elements from the 
space of functions differentiable almost everywhere on X. Integrating by parts, we obtain 

k==l I 

s 

U 
$- LJkTv -t CRTrlT - VA, - rick) cp -t. $- (DkTrsT - r2Dk) q, + 

k=l 
k k 

s fCkTrzT - ~4 - rlDk) 4 i q* (rack - BkTv - DxTrlT) .$!!$..I )dK $ 
k 

Here 

bT (VA, + rlCk) rP + ~~r,Dk4 i- tPT @k -t- r#k) 9 + 

+pT (BkTV + D~Tr~T~~) COS (Fz., Xk) 
3 

dx 

CO= .E a w, -t rlc,) 

6% 
- vA, - A,=v - r,c, - coTr,*, s ES x 

k=l 

where n is the outer normal to S; the notation xC5.X 
almost everywhere on X. 

indicates that Eq.tl.11) holds 

Let the matrices rl, rz satisfy the equations 

dk -I- rick = AkTU + ckTrIT, reDi, = flkTrsT, ckTraT = Vi& f rl& 

’ 
r 

3 Wk + r&‘k) 

k$ 

dzk -vB,-I’r,D,-CC,I’,T=O, XE’X, k=1,2 ,..., s 

k.il h’= h’h + rlcx) cp + ‘J’=r,D,‘b + vT (vB, + r,D,j 9 -I- 

qT (B,=V + DkTr,=) q] cos@, xk) = 0, x E’ 8 

Then for the derivative we obtain 

(1.11) 

(1.12) 

(1.13) 

(1.14) -s= -a;(p=(x,t)W(X)lp(x,~)~x 
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i.e., a quadratic form similar to that for V (1.9). 
By the method of Lyapunov functions /5/, the solution cp =$zzO of system (1.11, (1.1). 

(1.7) is asymptotically stable in the measure p (1.8) if the functional (1.9) is continuous 
and positive definite in the measure p, while its derivative dVi& (1.14) is negative 
definite in this measure. In stability analysis, the condition of negative definiteness of 
the derivative dV/dt (1.14) is replaced with the condition of non-positive definiteness. 

The continuity of the functional V (1.9) in the measure p (1.8) follows directly from 
the boundedness of the matrix u (x). Thus, stability analysis reduces to checking integral 
quadratic forms (1.9) for sign-definiteness. 

These results also suggest a solution for the problem of constructing the functional V 
(1.9) given a symmetrical matrix o(x). This involves solving Eqs.(l.ll), (1.12) for the 
matrices u(x), Yl (x), Tz (x) with the boundary conditions that follow from (1.13), (1.71. 
However, unlike the problem of constructing quadratic forms for ordinary differential equations, 
not all the elements of the matrix 0 (x) may be arbitrary in this case. This problem is 
considered in more detail in Sect.4 for a one-dimensional second-order hyperbolic equation. 

2. Let us consider the conditions of sign-definiteness. First we will derive the 
necessary and sufficient conditions of sign-definiteness of the inteqral quadratic form 

I? = \ ‘PT (x) f“ (x) f (x) rp (x) dx 
i 

(2.1) 

in the measure p (1.8). Here (p(x) is the n-dimensional vector function with arbitrary 
components IPi( L,(X), and f (x) = II fij (x)11 is a square triangular matrix whose elements 
are bounded measurable functions and the elements under the main diagonal are zero almost 
everywhere on X, i.e ., fjj (x) = 0, x E' X (j < c. j -~= 1. 2. . ., IL - 1). 

Theorem 1. For positive definiteness of the integral quadratic form F (2.1) in the 
measure 11 (1.8) it is necessary and sufficient that 

Ii,i(x)l>O. x;_-'X ('.a) 

i.e., that for any set 7 c X of finite measure there exists a positive number F such 
that 

jlfii(x)j?dx‘-e>!) (2.3) 

PKJO~. Necessity. Assume that the form F (2.1) is positive definite in p (1.8)‘ i.e., 
if C>E>O, then there exists a number 8 = 6 (E)> 0 such that E‘_> 6 (e). Now, assume 
that for all values of the index i less than s, where s E !1, 2, * ., nl is a fixed index, we 
have jjii(x)l>O, XE'X, and for i ==s there exists a set zcx of finite measure where 

jss (x) = 0, x E'7. The behaviour of f,*, (x) and the set XXZ and the behaviour of 
other elements lij (x on X is irrelevant. 

Since the choice of the functions cp (x) is arbitrary, we choose them so that 

vi(x)= 0, XE'X (i = s + l,s -t 2, . . ..n). qli(X)’ 0. x F=_‘S\z 
(i=1,2,...:s) 

ij!ij(x)~j(x)=o: xe'r (i==l,Z,...,S--1) 

Icp,(X)j>Ee,>C4 xE’z,CriX; ~~P,(X))>O, XE’T\T, 

Then 

where ]zl ( is the measure of the set 7r. By the conditions on f,, and (pi, we obtain 

F = s (f,,q~,)~ dx = 0 
s 

which contradicts the positive definiteness of the form F (2.1) in the measure p (1.81, 
i.e., for p>E>O there is no number 6 (e)>O such that F > 6 (E). Therefore, the 

condition 1 fs6 (x)1 > 0, x E* X is necessary. Repeating the argument for all s ==1,2 I .1 n, 
we prove the necessity of Conditions (2.2). 
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Sufficiency. Assume that Conditions (2.2) hold. We will show that the form F (2.1) is 

positive definite in the measure p (1.81, i.e, if pZa>O* there exists a number 6= 

6 (a) > 8 such that F2 h(e). 
Thus, let Condition f2.2) hold and let p>a>o. But if P>'>& then for at 

least one value of the index i, say i=s, we have Iv,(x) j>y,(~)>O at least on some 

set of finite measure 7*cx. Indeed, if no such set exists, i.e, if \z, 1 +O, where 

1% I is the measure of the set 'c,, then p 40 by qs E L,(X) and the absolute continuity 
of the Lebesgue integral /6/, which contradicts the inequality pbe>O. 

Let us now show that there exists a number 6 = S(E)> 0 such that F > A (a). First 

assume that /(~,,(x)j>~~>O on z,ctX, i.e., s=n. Then 

F > i (fn&,JS dx > I%’ 5 j:dx 2 %t% = 6% > 0 
32 32 

If cp, (x) = 0, x E' x, but I cpn-,@)I> %I> 0 on z,-~C X, then we again obtain 

F> s &-1,4fh-d*~x > L>O 

%a-x 

Continuing this reasoning step by step for s = n-2, I(- 3, . . ..I. we show that if 

t'>-'>O, then F > 6 (E)> 0, where 6 (E)= min(6,, Sar , . ., 6,), i.e., F is a positive 
definite form. The theorem is proved. 

Now consider the integral quadratic form 

where v(x) is a n-dimensional vector function with arbitrary components WE &I (X)9 and 

u(x) = II vii (r) II is a symmetrical matrix whose elements are bounded measurable functions. 
Let 

.?%eOrem 2. For 
measure p (1.8) it 

where the functions bli (x) (j< i, j = 1, 2, . . ., n) are computed from the recurrence formulas 

v, = qT (4 v fxf cp (4 (2.5) 

positive definiteness of the integral quadratic form li (2.4) in the 
is necessary and sufficient that 

i-l 

vii (X) - ,z b?i (X) > 0, X E’ X 

i-l 

i-x 
[~ij(x)-_Cqt(xfbkj(X)]~X~‘X fi=~+I,i+2,...,n) 

k=l 

(2.7) 

btj(x)=O, x&X (i>j,j=1,2,...,n--1) 

Proof. tfecessity. Assume that the form (2.41 is positive definite in the measure 
(1.8). Then for a given e>O there exists 6 = s(e)> 0 such that V> 6(e) if p> a! 
First we will show that in this case the quadratic form (2.5) is positive definite for 
x=*X, i.e., v,,>O for cpTcp>O almost everywhere on X. 

Assume that this is not so, i.e., v,<O at least on some set TCX of finite measure 

I T I. Since V(I), and therefore $9, is arbitrary, let (pTg>O on r=X and (pT~=O 

on X\7 when p>e)o. Then V= v&<o, 
f 

which contradicts the positive definiteness 
= 

of V (2.4) in p (1.81. Hence it follows that the form 
ness almost everywhere on X. 

ux (2.5) is also positive definite- 

The positive definite form v, (2.5) for a fixed XE'X is representable as 
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where 3 (x) = 11 b,, (x)1{ is a triangular matrix with zeros 
the inequalities 

Ibii(x)l>O, xE'x 

(2.9) 

under the main diagonal. We have 

(Ml) 

Indeed, lf bit(x)= 0 on a set zc x of finite measure, then by Theorem 1 the form V 
(2.4) with the integrand function represented by (2.9) cannot be positive definite in the 
measure p (1.8). We have obtained a contradiction. Thus, inequalities (2.10) hold. 

Now, comparing (2.5) and (2.9), we obtain U(X)= P'(x)B(x), or in scalar notation 

(2.11) 

Solving system (2.11) for various values of the indices i and j, starting with i = 1, 
j = -1, we obtain (2.71 and (2.8). Substituting (2.7) into (2.10), we verify that inequalities 
(2.6) hold. This completes the proof of the necessity of Conditions (2.6). 

Sufficiency. hssume that the inequalities (2.6) with the functions bil(xj calcuLatea 
from (2.7), (2.8) are satisfied. Then the given quadratic form V (2.4) is representable in 
the form 

and by (2.61, (2.7) it satisfies Conditions (2.10). Therefore, by Theorem 2, the form V 

(2.4) is positive definite in the measure p (2.2). The theorem is proved. 
Note that the proof of the necessity of the conditions of Theorem 1 and 2 essentially 

uses the fact that the functions 'pi are arbitrary. If not all these functions are 
independent, then (2.3) and (2.6) are only the sufficient conditions for positive definite- 
ness of the integral forms (2.1) and (2.41 I respectively, because the proof of sufficiency 
does not require the functions 'pi to be arbitrary. 

For example, the functional X' = ~@?I= - %Ydz (here and in what follows, integration 

over t is from 0 to I.), where n = oonst >O, 'pl = atpz/tis, va (0, t)= 0, has the bound (we use the 
inequality /5/ ~qnBd~<l/a~~~d~ ) 

where p is a number such that O<p<l. We choose p so 
B = Vg (2 - a), The condition O<B<S is satisfied if 

v>+I/s ~~-~)~t~l*~~za)~~ 

that S= 2(1-S) --. Hence we obtain 
a<% Here 

Thus, the functional V is positive definite in the measure p ={(q~~~+e&dz, if a < 2, 

although the form 'pta--ancpsz is not positive definite in 'Pi and cp,. 

3. Applying these conditions of sign-definiteness of integral quadratic forms, we will 
derive the sufficient conditions of asymptotic stability of the solution 'p==IpEO of 
system (1.11, (1.21, (1.7) in the measure p (1.8). 

!%eorem 3. Assume that the matrices n(x), r1 (x), r%(x) satisfying the Conditions 
(1'.12), (1.13) exist and that the inequalities (2.6) and 

i-l 

wji (x) - B d;&(x) > 0, x E’ x 
.i=l 

(3.1) 

hold, where @ii (x) are the elements of the matrix 0 (x) (1.111, and the functions a,, (a) 
(j< i, j = 1, 2, . . ., n) are computed from recurrences similar to (2.71, (2.8) with viJ 

replaced by O+ Then the solution f#E%&l'O of system (l.l)., (1.2), (1.7) is asymptoti- 
cally stable in the measure p (1.8). 

The proof of the theorem follows from the fact that by Theorem 2 the form V (1.9) is 
positive definite and the derivative dVldt (1.14) by the equations of the process (l.l), 
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(1.2), (1.7) is negative definite in the measure p (1.8). 
Similar conditions of asymptotic stability of the solution cp 3 4~ 0 in the measure 

p (1.8) can be formulated using the integral quadratic form (2.1). In this case, by Theorem 

3, inequalities (2.6) are replaced by the simpler inequalities (2.2), and the matrix n(x) 
is replaced by the matrix fr (x)f(x), where f (4 is the matrix from in (l.il)-(1.13) 

(2.1). 

4. Consider 
geneous boundary 

the construction of the functional V (1.9) for Eq.il.3) with linear homo- 
conditions, e.9, of the form 

b,y + bsay/a2 + b,aglat = 0; 2 = 0; I, t > 0 (4.1) 
b,* + b,’ + b,’ # 0 

where b,, b,, and bs are constants. Introducing new variables, we replace Eq.(1.3), (4.1) 
with the equivalent system (1.5) and 

b,cp, + b,cp, + b&‘a = 0; = = 0; 1, t 3 0 (4.2) 

In this case, the matrices Bk, Dkr r2 in Eqs.tl.12) are zero. Therefore, only the 

first of these equations remains, which together with (l.ll), where k= i and z1 = z, can 
be written in scalar form. This gives the following system of finite and ordinary differential 
equations: 

(4.3) 

where Wj = vi, (@T Yil = Y&l (3, oij = Wj C5) are the elements of the matrices U(Z), r,(z), and e (3, 
respectively. 

Condition (1.13) is rewritten as 

CP~ (A t)[v W, (1) + rz WA (Olcp (A t) - qT (0, t)[y VW, (0) + 
f, WC, P)le (0, t) = 0 

(4.5). 

In order to construct the functional V, we have to solve system (4.4) for al> "ii with 
the boundary conditions that follows from (4.5) subject to Conditions (4.2) and relationships 
(4.31, using given values of the functions ey. However, as we see from Eqs.i4.4), the 
functions opp and oJII cannot always be specified independently of one another, because the 
first and the fourth equations in (4.4) are consistent only if m, and %I satisfy the 
relationship 

ega = ((088 - ((da,/dz) - 24)~~s - 4a,u,, - Zala,v,,)/a, (4.6) 
In many cases, oSI is determined from Eq.(4.6) apart from an arbitrary constant, so 

that its value can be varied. 
Note that the functions "IL and vls only occur in the last equation but one in (4.4). 

In order to determine these functions separately, one of them is chosen arbitrarily but 
satisfying the boundary conditions, if given. 

Thus, the problem of constructing the functional V is solved in the following order: 
1) specify the values yX, es,, ols, eIIL, o,,; 
2) solve the first four equations in (4.4) with the boundary conditions that follow from 

(4.51, (4.2), (4.3) to determine A~,v~,, v,, u,; 
3) find v,,, as it follows from (4.3)‘ using the formula %a = VSG 
4) from the fifth equation in (4.4) find the functions vXt or vzS, choosing one of 

them arbitrarily; 
5) from Eq.(4.6) compute wII. 

The functional V (1.9) and its derivative dV/dt (1.14), by virtue of (1.5) and (4.2), 
are completely determined. 

Example. Consider the stability of torsional oscillations of an aircraft wing, described 
by the equations 

(4.7b 

where 2 is the wing half-span, x is the coordinate normalized by i,r=g(z,t) is the torsion 
angle of the cross-section with the coordinate z; I = I(z), R = A(t), h = h(z) are the linear 
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moment of inertia, the torsional stiffness, and the damping ratio in this cross-section, 
respectively; the term M(z)lay is the linear moment of the aerodynamic forces. 

Eqs.i4.71 are written in the form of the system (1.5) s where 

n, = Rl(ila), a, = (dR/d.z)/(IP), a3 = --h/I, at = --M/I (4.8) 

and 
'pl (0% t) = 'ps (1. 0 = 0 (4.9) 

From (4.9) we obtain 
*, (0, t)/ar = r& (0. t) = 0 (4.10) 

Using (4.91, (4.10) and (4.31, we obtain from (4.5) 

Yn (l) = $2, (0) = %a (1) = VI3 (1) = Q (4.11) 

Let us construct the functional V. Take yz = oz3 = was = 0, Oh = --24&J,,, OS* = 2a,y,. Solving 
the system of the first four equations from (4.41 with the boundary Conditibns (4.11) and 
using the values of a,, . . .I 04 (4.81, we obtain 

yn = 0, uzl = c&2, +a = 0, vzz = c,lP, vQs = a,",, = clR 

where Cl, 0 are arbitrary constants. Therefore, D~I= 2c1MI", ~18 = 2c1R. 
obtain from the fifth equation in (4.4) vjl = --a&, -%,%a= (c&f %M)p. 

From Eq.(4.6) we obtain oz2 = 2 (c,h - c&F. 
Let c1 = f. Then the functional V (1.9) and its derivative dVfdt 

(1.5), (4.8), (4.9) are written in the form (integration over 5 is from 

Setting vzB = 0, we 

(1.14) by system 
0 to 1 throughout) 

(4.12) 

(4.13) 

Using the inequality /I/ 5 ecp;Bds <llz f es% we obtain the bounds 

where 6r and 8, 

v aSite+ w w- 26 II- ed tin RI ~9 + c&C~~ + 211kp1cpz+ c&b min R@) ds (4.14) 

dV/dt < -2 \( IMP f 2 (1 - 0.J min R](p,z + (c& - I)c"rp,* -I- Ba min RqaZ) dz (4.15) 

are arbitrary numbers such that O<Q,<1,0< 8,<l, and the min operation 
1s over all IE [O, 11. 

From inequality (4.151, (3.1) we obtain that the form N/d& (4.13) is negative definite 
in the measure 

P = s W + ~2 + ~2) d= (4.n3) 

if 
2 min II + min Mla>O, cz> max Iiminh (4.17) 

The conditions of positive definiteness of the functional y (4.121 in this measures are 
written by the criterion (2.6) as 

ca> 0, cg (2 min R + min MF) + min hD >O 

cl; Ice@ min B f min MP) + min hP1 > max IF (4.18) 

The first two inequalities in (4.18) follow directly from inequalities (4.17), and the 
last inequality is obtained from (4.17) by representing it in the form 

tee (2 min R + min MP) > B (max I - c, min h) 

Here by (4.17) the left-hand side is positive and the right-hand side is negative. 
Thus, the solution tp0 of system (1.51, (4.81, (4.9) is asymptotically stable in 

the measure p (4.161 if the first inequality in (4.17) holds. The second inequality in 
(4.171 is not a stability condition. It is the condition that the constant c, should satisfy 
in order to ensure that V (4.121 and dV/& (4.13) are sign-definite in the measure p 
(4.16). 
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THE USE OF HIGH-ORDER FORMS IN STABILITY ANALYSIS* 

A.V. STEPANOV 

A method is proposed for determining whether forms of arbitrary high 
order are positive or negative definite in a region of Rn coinciding 
with one of the coordinate angles. Using such functions, one can then 
establish various modifications of well-known results of stability 
theory. A theorem of Grujic 111 concerning the exponential stability of 
large-scale systems, generalized to the case of m-th order estimates, 
yields new zones of absolute stability for the equations of 
translational motion of an aircraft. Various results are established 
pertaining to the monotone stability of systems in which the right-hand 
side is a polynomial of a special kind. 

In many problems of stability theory it suffices to construct a 
Lyapunov function which is positive or negative definite not in the 
whole space but only in a subspace, namely, a cone. This is a logical 
approach, for example, in relation to biological communities, since the 
trajectories of a system describing the dynamics of such interactions 
never leave the first orthant. Conditions for quadratric forms to be 
positive (negative) definite in a specific cone - one of the coordinate 
angles - were studied in /2/. A criterion for a quadratic form to be 
positive (negative) definite in a certain region of Rn, similar in a 
sense to the conditions obtained in /2/, was established in 131 and f4/. 
Even before that, a criterion was proposed /5/ for a form of order 3 to 
be positive (negative) definite in one of the coordinate angles. Also 
worthy of mention is a method described in /6/ to determine whether 
forms of arbitrary even order are definite in the whole space. 

Relying on the concept of a cone coinciding with a coordinate 
angle, as well as the results and /5/ and /6/, a method can be devised 
to investigate whether a form of arbitrary high (including odd) order is 
definite in an orthant of Rn. 

1. ~QfiniteneSS Of a fOPm Of arbitrary order min a CO?le. A cone in R" coinciding with 
a coordinate angle will be denoted as follows /7/: K {a,,,...,a,,), where 
of a basis (a*&} 

ai, are elements 
taking values +1 and -1, and 

ai, = slgnq, xj+O; CQ~~>O 

Throughout, i = 1, 2, . . ., n. 
In a cone X of the region H={s:O~,<~z/I=jx,I+...~ /zn]<oo) we consider anm-th 

order form 

W(X) = $I * . * 
i,=l 

i 
im-'m-x 

Ai, i,xi,. . * xi,, AI,...~, = const 


